Skip to content

Publications



Key Monographs

Marmarelis, P.Z., and V.Z. Marmarelis. Analysis of Physiological Systems: The White-Noise Approach. Plenum Press, New York, 1978. Russian translation: Mir Press, Moscow, 1981. Chinese translation: Academy of Sciences Press, Beijing, 1990.

Marmarelis, V.Z. Nonlinear Dynamic Modeling of Physiological Systems. Wiley Interscience, 2004.

Selected Journal Articles

Marmarelis, V.Z. Signal transformation & coding in neural systems. IEEE Trans. Biomed. Eng. 36:15-24, 1989

Marmarelis, V.Z. Identification of nonlinear biological systems using Laguerre expansions of kernels. Annals of Biomed. Eng. 21:573-589, 1993. .

Marmarelis, V.Z., and M.E. Orme. Modeling of neural systems by use of neuronal modes. IEEE Trans. Biomed. Eng. 40:1149-1158, 1993.

Marmarelis, V.Z. Modeling methodology for nonlinear physiological systems. Annals of Biomedical Engineering 25:239-251, 1997.

Marmarelis, V.Z. and T.W. Berger: General methodology for nonlinear modeling of neural systems with Poisson point-process inputs. Mathematical Biosciences 196:1-13, 2005.

Marmarelis, V.Z., T.P. Zanos, and T.W. Berger. Boolean modeling of neural systems with point-process inputs and outputs. Part I: Theory and simulations. Part II: Application to the rat hippocampus. Annals of Biomed. Eng. 37: 1654-1682, 2009.

Berger T.W., D. Song, R. H. M. Chan and V. Z. Marmarelis. The neurobiological basis of cognition: Identification by MIMO nonlinear dynamic modeling. Proc. IEEE 98: 356-374, 2010.

Berger T.W., R.E. Hampson, D. Song, A. Goonawardena, V.Z. Marmarelis and S.A. Deadwyler. A cortical neural prosthesis for restoring and enhancing memory. J Neural Eng. 8:1-12, 2011.

Hampson R. E., Song, D., Chan, R. H. M., Sweatt, A. J., Fuqua, J., Gerhardt, G. A., Shin, D., Marmarelis, V. Z., Berger, T. W., & Deadwyler, S. A. A nonlinear model for hippocampal cognitive prosthesis: Memory facilitation by hippocampal ensemble stimulation. IEEE Trans. Neural Systems & Rehab. Eng. 20:184-197, 2012.

Marmarelis V.Z., D.C. Shin and R. Zhang. Analysis of cerebral flow autoregulation using Principal Dynamic Modes: linear and nonlinear modeling. Open Biomedical Eng. Journal 6:42-55, 2012. PMID:PMC3377891

Marmarelis V.Z., D. C. Shin, D. Song, R. E. Hampson, S. A. Deadwyler and T. W. Berger. Design of optimal stimulation patterns for neuronal ensembles based on Volterra-type hierarchical modeling. Journal of Neural Engineering 9(6):066003, 2012. DOI:10.1088/1741-2560/9/6/066003.

Marmarelis V.Z., D. C. Shin, D. Song, R. E. Hampson, S. A. Deadwyler and T. W. Berger. Nonlinear modeling of dynamic interactions within neuronal ensembles using Principal Dynamic Modes. Journal of Computational Neuroscience 34(1):73-87, 2013. DOI 10.1007/s10827-012-0407-7.

Eikenberry S.E. and V.Z. Marmarelis. A nonlinear auto-regressive Volterra model of the Hodgkin-Huxley equations. Journal of Computational Neuroscience 34(1):163-173, 2013. DOI 10.1007/s10827-012-0412-x. PMID: 22878687

Marmarelis V.Z., D.C. Shin, M.E. Orme and R. Zhang. Closed-loop dynamic modeling of cerebral hemodynamics. Annals of Biomedical Eng. 41:1029-1048, 2013. DOI: 10.1007/s10439-012-0736-8.

Marmarelis V.Z., D.C. Shin, M.E. Orme and R. Zhang. Model-based quantification of cerebral hemodynamics as a physiomarker for Alzheimer’s disease? Annals of Biomedical Engineering2013. DOI 10.1007/s10439-013-0837-z.

Marmarelis V.Z., D. C. Shin, D. Song, R. E. Hampson, S. A. Deadwyler and T. W. Berger. On parsing the neural code in prefrontal cortex of primates using Principal Dynamic Modes (in press). DOI: 10.1007/s10827-013-0475-3.

Marmarelis V.Z., D. C. Shin, Y. Zhang, A. Kautzky-Willer, G. Pacini and D.Z. D’Argenio. Analysis of intravenous glucose tolerance test data using parametric and nonparametric modeling. Diabetes Science & Technology (in press).